

The Accelerator Complex in the Post Run II Era

Ioanis Kourbanis
Project X Physics Workshop
November 9, 2009

Outline

- Fermilab Accelerator complex
- Current performance
 - > Booster
 - > Main Injector
- Accelerator complex after the Collider Run
 - > NOvA
 - > Muon Experiments (Mu2e, g-2)
 - > TeV Stretcher
- Conclusions

Linac

- > 400 MeV H-
- > 35 mA
- > 5e11/turn on Booster Injection

Booster

- > 8 GeV p
- > Multi-turn charge exchange injection
- > 9 15 Hz
 - Limitations on repetition rate RF systems, reliability, and beam loss
 - RF Upgrades necessary to reach 15 Hz
- > Losses through ramp
- > 4.5e12 10 turns

Recycler:

- > 8 GeV permanent magnet ring
- Used for antiproton storage and cooling.

Main Injector

- > 8 GeV / 120 GeV / 150 GeV
- > Min. 120 GeV cycle time (<1.5 sec)
- > 2.2 sec mixed mode cycle (NuMI+stacking)
- ➤ Slow extraction (SY120)
 - Limited by losses (Slip Stacking)

AntiProton Source:

- > 2 Rings Accumulator and Debuncher
- > 8 GeV nominal
- > Slow ramp (lower energies)
- > Target station and associated beam lines

Debuncher

Accumulator

Addressing the Protons Demands

Proton Plan:

- > Increase flux through Booster
- ➤ Installation 2nd set of Booster Correctors Summer 09

Booster FY09

- Standard cycle: 2.2 seconds
 - > 2 prepulse
 - > 2 pbar
 - > 9 NuMI
 - > 3 BNB

Run 4th to BNB: held off due to reliability concerns

7.3 Hz, 6.4 Hz with beam

Booster Protons per hour

Main Injector High Power Operation (Mixed Mode)

Project X Physics Workshop

I. Kourbanis

MI Beam Power

•MI 120 GeV power from Aug. 2008 till May 2009.

•MI 120 Gev power since the startup.

Weekly protons to NuMI Target

Accelerator complex after Collider Run

- Recycler ring is transformed into a proton injector for Main Injector in order to reduce the MI cycle time and to increase the MI 120 GeV beam power to 700 KW operation for NOvA.
- Booster rep rate increases to 10.5 Hz and upgrades are in place for 15 Hz operation.
- The antiproton rings will be reconfigured for muon physics at 8 GeV.
- Tevatron can be used for fixed target physics at 120 (150)
 GeV.

Current Accelerator Schedule

Draft 2010-13 Fermilab Accelerator Experiments' Run Schedule

Typically Revised Annually - This Version from October, 2009

Calendar Year		2010			2011			2012	2013
Tevatron Collider		CDF & DZero		CDF & DZero		OPE	N		OPEN
	В	MiniBooNE		MiniBooNE					OPEN
Neutrino Program		OPEN		OPEN					MicroBooNE
	м	MINOS		MINOS					OPEN
		MINERVA		MINERVA					MINERVA
		ArgoNeuT							
							NOvA		NOvA
SY 120	MT	Test Beam						Test Beam	
	MC	OPEN		OPEN					OPEN
	NM4	E-906/Drell-Yan		E-906/Drell-Yan					E-906/Drell-Yan

This draft schedule is meant to show the general outline of the Fermilab accelerator experiments schedule, including unscheduled periods.

Major components of the schedule include shutdowns:

In Calendar 2010, a 4-6 week shutdown for maintenance is shown.

In Calendar 2011, no shutdown for maintenance is shown.

A 2012-3 11-month shutdown is shown to upgrade the proton source and change the NuMI beam to the Medium Energy (ME) config.

RUN/DATA
STARTUP/COMMISSIONING
INSTALLATION
M&D (SHUTDOWN)

19-Oct-09

700 kW for NOvA

- When Collider program concludes, use the Recycler as a proton preinjector
 - Use the Recycler to accumulate protons from the Booster while MI is accelerating
 - > Can save 0.4 s for each 6 Booster batches injected
- Recycler momentum aperture is large enough to allow slip-stacking operation in Recycler, for up to 12 Booster batches injected
 - 6 batches are slipped with respect to the other 6 and, at the time they line up, they are extracted to MI in a single turn and there re-captured and accelerated
 - Main Injector will run at its design acceleration rate of 240 GeV/s (1.3s cycle time)
 (operates at 204 GeV/s presently)
 - 4.3 10¹² p/batch, 95% slip-stacking efficiency
 - 4.9×10¹³ ppp at 120 GeV every 1.333 s
 - ⇒ 700 kW

- Recycler Ring, RR
 - New injection line into RR
 - New extraction line from RR
 - New 53 MHz RF system
 - New low level RF system
 - New kickers
- Main Injector
 - Two additional 53 MHz cavities (total 20 instead of 18)
 - Quad Power Supply Upgrade
- NuMI
 - Change to medium energy v beam configuration (new target)
 - Cooling & power supply upgrades

MI Ramp

First kickers installed in the MI tunnel (NOvA)

•The kicker gap clearing kickers are the most technically challenging of the new kickers required for NOvA (Rise/fall time <57nsec).

RR Injection Line Modeling (NOvA)

New Accelerator Service Buildings (NOvA)

4th Anode Supply Building

8 GeV Experimental Facility

- During the 700kW NOVA era, it takes 0.8 seconds to fill the Recycler at 15Hz
- Since the Main Injector ramp requires 1.33 seconds, the Recycler is empty and available for 0.53 seconds (8 Booster cycles).
- If the Recycler is connected to the current P1 line, beam can be sent to the Accumulator via the P1-P2-AP3 line (as it is done now) with no civil construction.

The Recycler Boomerang*

*C. Ankenbrandt et al

•A beamline connecting RR to P150 line is critical for delivering protons to the Antiproton Rings.

Booster 15 Hz Operation

- Booster will be required to run beam in all available cycles.
- The remaining components upgrades required for 15 Hz
 Booster operation are rf related.
 - > Implement cooling on the end cones of the ferrite-loaded tuners.
 - > Replace the West Gallery Ferrite Bias Supply transformers (10)
 - > Replace the East and West Gallery Anode Power Supply transformers.
 - The solid state upgrade of the rf amplifiers is critical for reliability
- Booster operation at 15 Hz with 4.3E12 ppp corresponds to 2.2x10E17 protons per hour while the current limit dictated by losses is 1.4xE17 protons per hour.
 - > Installation of Booster correctors is expected to help with losses.
 - > Plan to replace the current source and the Cockcroft-Walton in order to reduce the emittances from Linac and help the losses.

Mu2e Beam requirements

- •Beam delivered in short time bursts (<200 nsec), separated by intervals of about 1.7 micro sec.
- •Suppression of the primary proton between bursts by a factor of 10E9.
- •Total of 4x10E20 protons on target during one or two years of running.

Original Mu2e Proposal

Bunch Formation—Mu2e Proposal

- Momentum stack 3 Booster batches in Accumulator.
- •Form single bunch; transfer to Debuncher.
- •Phase rotate and recapture.
- •40 nsec bunch, Dp/p~0.8%(rms)
- •Alternate scenarios that avoid the large momentum spread and space charge tune shift have been proposed.

g-2 Beam Requirements

- •3.09 GeV/c muons into an existing muon storage ring.
- •Beam pulsed with 100 nsec or less separated on the scale of about 10 msec (allowing muons to decay and data to be collected).
- Total of 2x10E20 protons.

Bunch Formation for g-2

- •Generate 4 "mis-matched" 2.5 MHz bunches per Booster batch in Recycler that phase rotate in 24 msec; extract one every 12 msec.
- •Target at APO target Hall; use pbar rings as 1-pass "decay channel" for pions; accumulate muons in g-2 ring.

Beam simulations for g-2

- Requires a 4KV barrier bucket rf system
- *Uses the 2.5+5MHz coalescing rf from MI

C.M. Bhat and J.A. MacLachlan

I. Kourbanis

Tevatron Stretcher

M. Syphers

- •TeV circumference =2xMI
- Take two MI cycles to fill
- •Use 2 cycles out of n, n>1, for use in TeV 120 the other n-2 used for NOvA.
- •Slow Spill during the available n-1 MI cycles.

TeV Stretcher Implementation

- Can use the FO injection septum as an extraction septum (needs polarity switch)
- Install electrostatic septum near FO, or perhaps CO.
 - \succ CO presently "unused"; ideal for $\frac{1}{2}$ -integer extraction.
- Resurrect slow-spill feedback system ("QXR")

TeV Stretcher with 12 Booster batches

Pic	ax levacio	n Incen	sicy - 3	6 Tp = 9.66	e13 at	120 GeV	
n	T[s]	df[%]	hit[%]	Pave[kW]	Pmax[kW]	NdotAve[Tp/s]	NdotMax[Tp/s]
2	2.667	50	100	691	1382	36.0	72.0
3	4.000	67	67	461	691	24.0	36.0
4	5.333	75	50	346	461	18.0	24.0
5	6.667	80	40	276	346	14.4	18.0
10	13.333	90	20	138	154	7.2	8.0
20	26.667	95	10	69	73	3.6	3.8
50	66.667	98	4	28	28	1.4	1.5
100	133.333	99	2	14	14	0.7	0.7
200	266.667	100	1	7	7	0.4	0.4

Conclusions

- After the collider run is over the Fermilab
 Accelerator complex will be re-configured for high
 intensity proton operations.
 - > The Recycler is transformed into a proton pre-injector for MI.
 - > The pbar rings will be re-congfigured for muon physics at 8 GeV.
 - > The TeV can be used for fixed target physics.
- We have a list of Booster/Linac upgrades that are required for 15 Hz operation and the reduction of losses.
- The long Accelerator shutdown in FY12 is critical for the Booster upgrades and the 8 GeV muon physics program.

Extra slides

Mountain Range Picture of 11 Batch slip stacking

Project X Physics Workshop

I. Kourbanis

MI Downtime

- From January1, 2008 to April 3, 2009 the total MI downtime was 325 Hrs, i.e 3.8% of the total time.
- The biggest sources for downtime was the MI Rf and the Power Supplies.
- The rf requirements are larger because of the amount of the beam-loading compensation required during slip stacking and the amount of beam that is accelerated.

关

Longitudinal simulation for 11 batch slip stacking

MI Record Intensity

Mu2e Alternatives

Hybrid A: thread between NOvA fills

